Transistors, How do they work ?

The invention of transistors revolutionized human civilization like no other technology At the heart of a smartphone lies a processor And this processor holds about 2 billion transistors What do these incredibly tiny devices do? How do they work? Transistors can act like a switch with no moving parts They can amplify a weak signal, in fact amplification is the basic function of a transistor First let’s understand the basis of transistors,
we will come back to the application part later Transistors are made of semiconductors such as silicon Each silicon atom is bonded with four neighboring silicon atoms Silicon has four electrons in its valence shell Let’s replace the silicon atom with a four-handed smiley Each hand holds one electron Each one of these electrons goes for sharing with a neighboring silicon atom This is known as a covalent bond Currently the electrons are in their valence band If the pure silicon has to conduct electricity The electrons have to absorb some energy and become free electrons Thus the pure silicon will have a low electrical conductivity A technique called doping is used to improve the conductivity of semiconductors For example say you inject phosphorus with five valence electrons Here one electron will be free to move in the system This is known as N-type doping On the other hand if you inject boron with three valence electrons There will be a vacant position for an electron this vacant position is known as a hole and a neighboring electron can fill this hole at any time This electron movement is visualized as holes moving in opposite direction We call this P-type doping If you dope a silicon wafer in the following manner a transistor is born But if you really want to understand how a transistor works, we have to get a clear idea of what happens at the electron level of a more basic component, a diode A diode is formed when you dope one part of silicon as a P-type and the other part as an N-type Something very interesting happens at the boundary of the N and P joint The abundant electrons on the inside will have a natural tendency to migrate to the holes that are available on the P side This will make the P side boundary slightly negatively charged and the N side slightly positively charged The resulting electric field will oppose any further natural migration of the electrons Ff you apply an external power source across the diode as shown, the power source will attract the electrons and holes Electricity flow is impossible in this case However, if you reverse the power connection the situation is quite different Assume that the power source has enough voltage to overcome the potential barrier You can immediately see that the electrons will be pushed away by the negative terminal When the electrons cross the potential barrier, they will be drained of energy and will easily occupy the holes in the P region But due to the attraction of the positive terminal, these electrons can now jump to the holes nearby in the P region and flow through the external circuit This is known as the forward biasing of a diode Just keep this simple principle of a diode in mind, you will understand the operation of a transistor very easily Now back to the transistor Note that the P layer is really thin and lightly doped You can easily see that a transistor is essentially two diodes sandwiched back to back So whichever way you connect the power source, one diode will always be reverse biased and block the electricity flow This means the transistor is in the off state Now let’s connect a second power supply as shown The power supply should have enough voltage to overcome the potential barrier So this is just a forward biased diode Thus a high number of electrons will be emitted from the N region Just like in a diode a few electrons will combine with the holes and jump across the neighboring holes and flow to the base But there are a lot more electrons that has crossed to the P side, what will these remaining electrons do? Think for a moment The remaining electrons will get attracted by the positive terminal of the first power source and will flow straight as shown Note that the P region is very narrow which ensures that no remaining electrons flow to the positive terminal of the second power source In short a small base current is amplified to a high collector current You can easily correlate the naming of the transistor terminal with the nature of electron flow Ff you can increase the base current the collector current will increase proportionally, this is a clear case of current amplification The kind of transistor we have discussed is called a bipolar junction transistor Let’s replace this representative transistor with a realistic one You can further improve the amplification by introducing one more transistor Yhe base of this transistor is connected with the emitter of the first transistor Ff you introduce a weak fluctuating signal at the input like what you would find in a microphone, you will get an amplified signal at the loudspeaker The other interesting thing you can note about this basic circuit, is that depending on the value of the applied voltage, the transistor can be either on or off Here the transistor acts as a switch This property of the transistor opens the doors to the world of digital electronics and digital memory Using two BJT’s you can build the basic dynamic memory element of computer: a flip-flop To know more about it please watch the video on the transistor as a switch Please support us at so that we can continue our free educational service Thank you!

Leave a Reply

Your email address will not be published. Required fields are marked *