After watching this, your brain will not be the same | Lara Boyd | TEDxVancouver

After watching this, your brain will not be the same | Lara Boyd | TEDxVancouver


Translator: Jessica Lee
Reviewer: Denise RQ So how do we learn? And why does some of us learn things
more easily than others? So, as I just mentioned,
I’m Dr. Lara Boyd. I am a brain researcher here
at the University of British Columbia. These are the questions that fascinate me. (Cheers) (Applause) So brain research
is one of the great frontiers in the understanding of human physiology, and also in the consideration
of what makes us who we are. It’s an amazing time
to be a brain researcher, and I would argue to you that I have the most interesting job
in the world. What we know about the brain
is changing at a breathtaking pace. And much of what we thought we knew
and understood about the brain turns out to be not true or incomplete. Some of these misconceptions
are more obvious than others. For example, we used to think that after childhood the brain did not,
really could not change. And it turns out that nothing
could be farther from the truth. Another misconception about the brain is that you only use parts of it
at any given time and it’s silent when you do nothing. Well, this is also untrue. It turns out
that even when you’re at a rest and thinking of nothing,
your brain is highly active. So it’s been advances
in technology, such as MRI, that’s allowed us to make these
and many other important discoveries. And perhaps the most exciting, the most interesting
and transformative of these discoveries is that, every time you learn
a new fact or skill, you change your brain. It’s something we call neuroplasticity. So as little as 25 years ago,
we thought that after about puberty, the only changes that took place
in the brain were negative: the loss of brain cells with aging, the result of damage, like a stroke. And then, studies began
to show remarkable amounts of reorganization in the adult brain. And the ensuing research has shown us that all of our behaviors
change our brain. That these changes are not limited by age, it’s a good news right? And in fact,
they are taking place all the time. And very importantly, brain reorganization helps
to support recovery after you damage your brain. The key to each of these changes
is neuroplasticity. So what does it look like? So your brain can change
in three very basic ways to support learning. And the first is chemical. So your brain actually functions
by transferring chemicals signals between brain cells,
what we call neurons, and this triggered a series
of actions and reactions. So to support learning,
your brain can increase the amount or the concentrations
of these chemical signaling that’s taking place between neurons. Because this change can happen rapidly, this supports short-term memory or the short-term improvement
in the performance of a motor skill. The second way that the brain
can change to support learning is by altering its structure. So during learning, the brain can change
the connections between neurons. Here, the physical structure
of the brain is actually changing so this takes a bit more time. These type of changes are related
to long-term memory, the long-term improvement
in a motor skill. These processes interact,
and let me give you an example of how. We’ve all tried to learn
a new motor skill, maybe playing the piano, maybe learning to juggle. You’ve had the experience
of getting better and better within a single session of practice, and thinking “I have got it.” And then, maybe you return the next day, and all those improvements
from the day before are lost. What happened? Well, in the short-term,
your brain was able to increase the chemical signaling
between your neurons. But for some reason, those changes
did not induce the structural changes that are necessary
to support long-term memory. Remember that
long-term memories take time. And what you see in the short term
does not reflect learning, It’s these physical changes that are now going to support
long-term memories, and chemical changes
that support short-term memories. Structural changes also can lead
to integrated networks of brain regions that function together
to support learning. And they can also lead
to certain brain regions that are important
for very specific behaviors to change your structure or to enlarge. So here’s some examples of that. People who read Braille have larger hand sensory areas
in their brain than those of us who don’t. Your dominant hand motor region,
which is on the left side of your brain, if you are right-handed,
is larger than the other side. And research shows
the London taxi cab drivers who actually have to memorize a map
of London to get their taxi cab license, they have larger brain regions devoted
to spatial, or mapping memories. The last way that your brain
can change to support learning is by altering its function. As you use a brain region, It becomes more and more excitable
and easy to use again. And as your brain has these areas
that increase their excitability, the brain shifts
how and when they are activated. With learning, we see that whole networks of brain activity
are shifting and changing. So neuroplasticity is supported by chemical, by structural,
and by functional changes, and these are happening
across the whole brain. They can occur in isolation
from one or another, but most often,
they take place in concert. Together, they support learning. And they’re taking place all the time. I just told you really
how awesomely neuroplastic your brain is. Why can’t you learn anything
you choose to with ease? Why do our kids sometimes fail in school? Why as we age
do we tend to forget things? And why don’t people fully recover
from brain damage? That is: what is it that limits
and facilitates neuroplasticity? And so this is what I study. I study specifically how it relates
to recovery from stroke. Recently, stroke dropped from being the third leading cause
of death in the United States to be the forth leading cause
of death. Great news, right? But actually, it turns out that the number of people
having a stroke has not declined. We are just better at keeping
people alive after a severe stroke. It turns out to be very difficult
to help the brain recover from stroke. And frankly, we have failed to develop
effective rehabilitation interventions. The net result of this
is that stroke is the leading cause of long-term disability
in adults in the world; individuals with stroke are younger and tending to live longer
with that disability, and research from my group actually shows that the health-related quality of life
of Canadians with stroke has declined. So clearly we need to be better at helping people recover from stroke. This is an enormous societal problem, and it’s one that we are not solving. So what can be done? One thing is absolutely clear: the best driver of neuroplastic change
in your brain is your behavior. The problem is that the dose
of behavior, the dose of practice that’s required to learn
new and relearn old motor skills, is very large. And how to effectively deliver
these large doses of practice is a very difficult problem;
It’s also a very expensive problem. So the approach
that my research has taken is to develop therapies that prime
or that prepare the brain to learn. And these have included brain simulation,
exercise, and robotics. But through my research,
I’ve realized that a major limitation to the development of therapies
that speed recovery from stroke is that patterns of neuroplasticity
are highly variable from person to person. As a researcher,
variability used to drive me crazy. It makes it very difficult
to use the statistics to test your data and your ideas. And because of this,
medical intervention studies are specifically designed
to minimize variability. But in my research,
it’s becoming really clear that the most important,
the most informative data we collect is showing this variability. So by studying the brain
after stroke, we’ve learned a lot, and I think these lessons
are very valuable in other areas. The first lesson is that the primary driver of change
in your brain is your behavior, so there is no neuroplasticity drug
you can take. Nothing is more effective than practice
at helping you learn, and the bottom line
is you have to do the work. And in fact, my research has shown increased difficulty, increased struggle
if you will, during practice, actually leads to both more learning, and greater structural change
in the brain. The problem here is that neuroplastcity
can work both ways. It can be positive,
you learn something new, and you refine a motor skill. And it also can be negative though,
you forgot something you once knew, you become addicted to drugs, maybe you have chronic pain. So your brain is tremendously plastic, and it’s been shaped both structurally
and functionally by everything you do, but also by everything that you don’t do. The second lesson
we’ve learned about the brain is that there is
no one-size-fits-all approach to learning. So there is no recipe for learning. Consider the popular belief
that it takes 10,000 hours of practice to learn and to master a new motor skill. I can assure you
it’s not quite that simple. For some of us, it’s going to take a lot more practice,
and for others it may take far less. So the shaping of our plastic brains
is far too unique for there to be any single intervention
that’s going to work for all of us. This realization has forced us to consider
something call personalized medicine. This is the idea that to optimize outcomes each individual requires
their own intervention. And the idea actually comes
from cancer treatments. And here it turns out that genetics
are very important in matching certain types of chemotherapy
with specific forms of cancer. My research is showing that this
also applies to recovery from stroke. There’re certain characteristics
of brain structure and function we called biomarkers. And these biomarkers
are proving to be very helpful and helping us to match specific therapies
with individual patients. The data from my lab suggests
it’s a combination of biomarkers that best predicts neuroplastic change
and patterns of recovery after stroke. And that’s not surprising, given
how complicated the human brain is. But I also think we can consider
this concept much more broadly. Given the unique structure
and function of each of our brains what we’ve learned about neuroplasticity
after stroke applies to everyone. Behaviors that you employ
in your everyday life are important. Each of them is changing your brain. And I believe we have to consider not just personalized medicine
but personalized learning. The uniqueness
of your brain will affect you both as a learner and also as a teacher. This idea helps us to understand why some children can thrive
in tradition education settings and others don’t; why some of us can learn languages easily and yet, others can pick up
any sport and excel. So when you leave this room today, your brain will not be the same
as when you entered this morning. And I think that’s pretty amazing. But each of you is going to have changed
your brain differently. Understanding these differences, these individual patterns,
this variability and change is going to enable
the next great advance in neuroscience; it’s going to allow us to develop
new and more effective interventions, and allow for matches
between learners and teachers, and patients and interventions. And this does not just apply
the recovery from stroke, it applies to each of us, as a parent,
as a teacher, as a manager, and also because you are
at TEDx today, as a lifelong learner. Study how and what you learn best. Repeat those behaviors
that are healthy for your brain, and break those behaviors
and habits that are not. Practice. Learning is about doing the work
that your brain requires. So the best strategies
are going to vary between individuals. You know what, they’re even going
to vary within individuals. So for you, learning music
may come very easily, but learning to snowboard, much harder. I hope that you leave today with a new appreciation
of how magnificent your brain is. You and your plastic brain are constantly
being shaped by the world around you. Understand that everything you do, everything you encounter, and everything
you experience is changing your brain. And that can be for better,
but it can also be for worse. So when you leave today,
go out and build the brain you want. Thank you very much. (Applause)

100 thoughts on “After watching this, your brain will not be the same | Lara Boyd | TEDxVancouver

  1. There are short cuts, they just are not plausible or realized. When we have a traumatic event our mind hardwires the information to short and long term memory. Back engineer this process and you would have a better understanding of memory.

  2. I'm not gonna say anything but you are going to read my mind – the short term has always been reading – the books – the pictures – however, when you are not treated like a queen or king will you get upset? or will you be proud of yourself & learn from it

  3. I believe everything that I have ever learned is all lies and whatever anything anyone is influencing me to do or learn are the biggest and more lies .

  4. Eat healthy appetite, do workout exercise and do walk at morning time to get fresh air. Fresh air and blood circulation leads to healthy body even in old age.

  5. 0:53 “What we know about the world is changing at a breathtaking place.”

    Random Guy: YOU’RE BREATHTAKING!

  6. Well , when I saw this video 3 years ago I thought it is misleading and wastful …but now I find it really great after reading researches ….this ensures how my mind has been changed
    I mean I was not aware of BDNF, growth factor and lifestyle changing effect on brain

  7. I want to learn how my brain Change to be a better person. Watching the speech of Ted Talks Lara Boyd

  8. Yoga's books five books I have in different authors from these I learned 75 yogasnas , pranayam, meditation. Learned in schools work then so many students and teachers learned.

  9. Stroke is nature 's way of saying "it's over" Stop fighting it. setup the assisted suicide and stop draining peoples bank accounts and stressing out loved ones!

  10. 0:34 did the cue to cheer lagged?
    EDIT: I am 5 min in and I am confused AF
    EDIT 2: 8 min in … ok this was waste of time

  11. Brains need a way to be cleaned
    Get that right
    Like preventative maintenance
    Like changing the oil on your car
    The way we eat and breathe

  12. summary of whole video–करत-करत अभ्यास के जड़मति होत सुजान

  13. Uh, I don't know who you are, but guess what? Your brain is never the same after watching or hearing or seeing anything, even if you have experienced it before. That's what neuroplasticity does.

  14. All that’s fine, but as their are different levels of strokes, So let’s say, someone that’s had a bad stroke, Now has communication issues (Q) how dose that person trigger/activate their brain to relearn to get all this happening.

  15. One of the best lesson for all those ones who suffered from mental problems.Even you are a student, parents, teachers, startup, entrepreneur etc. Thanks love Ted X

  16. SSRIs actually favor neuroplasticity. Couple that with cognitive therapy and you got yourself a major tool of self change

  17. They really gather to get what? some scientific info. about the power of mind!! Really sorry for these people

  18. If our Brains were simple enough for us to understand them, … we would be too simple to understand it.

  19. Cant understand, 😢😪english is very difficult to me, i watched this fully.. I recoganise the words meaning but cant summerise the content😰

  20. My dad had a stroke 26 years ago. My mom was told he would live two, but my dad wouldn't take that. He started forcing himself to do things that were impossible to him. With time, those impossible things became natural to him (walking with a cane, eating by himself, showering and going to the bathroom with no help). Doctors in ours country still don't understand why he is alive because of the condition of his brain. In my case, I'm happy he's around.

  21. Nice talk, so where is the movement to replace AA with something that makes sense? Clearly we need to be 'better at this' and this is an enormous societal 'problem' that needs a real solution. And don't delude yourself that this is some sort of program to be directed at 'adults' who are not capable of (re)cognizing this particular problem. This is something that needs to be 'taught' and 'learned' at the pre teen age. So good luck with that but 'considering this problem much more broadly' would be a process that might just make sense.

  22. ماعليكم منهم .. حفظ القران وتلاوته والعمل به يجعل من عقلك الافضل لدراسة وحفظ اي اتجاه علمي فيزيائي كان ام كيميائي والخ .. القران سر التفوق اجعله اهم شيء في حياتك اخي المسلم والله يهدي من اشرك به لنور الاسلام

  23. I got it what she what's to tell, I have ADHD(still on meds😄, but I don't like to take it at all cause it suppresses my words, which I want to tell) , Dyslexia and ASPERGER syndrome and hyperthymesian too, so I am able to understand it in my way ,I can image the thing she wants to tell, In past 3 months my verbal skills got enhanced and I can understand concepts even faster as compare to earlier and when we learn something new our brain changes its way of thinking , working , way of implementing and executing too, so it depends upon u how u can manage these all according to u yourself.

  24. If you get a sieve and sieve baking flour hard enough, you will be able to sieve all the atoms out and have a handful of flour atoms – which you can throw at someone. Throw them with the correct velocity, at a brick wall and you will see them form into a goat. A male goat. White, with a demented smile.

  25. It's why we learn better with smaller amounts of info, whenever i'm learning something i only learn a few Concepts like i'm learning Math on Khan Academy but after a Unit my brain is just full it's like "noop… stop… give me time to sit on this, get used to the input for a few days to a week then come back" LOL Sal just added some new stuff but he given us stuff where it's all we need to learn the Math we don't actually need a zillion Concepts when we can get the jist of what do with just a handful of Concepts, so he's nicely went with smaller amounts of info is better, we can only focus out full attention on 1 thing at a time like with Driving or Multi-task on 2 smaller tasks, so smaller is more.

    I also need to make Notes on Google Docs on certain Concepts so they stay fresh in my mind and ensures they get into my Long-Term Memory like Carrying Numbers, Missing Numbers and Groups and Note down how i personally work out the questions that's the best and easiest for me and it's just a small explanation too, Missing Numbers i just took the example from the video for that and Groups your taught to Draw objects as many as the Equation totals to or at least how many Down and Across so that's what i did i just used some Circle Shapes and added in some Text to show what the Equation is on each side i seperated and the answer 🙂 i use a few colors too cos it's better, i'll continue to Note down any Concepts as i go if i need to and will only take me a few mins to read over it 😛 every time i read it and do it i'm practising it too, we're already practising things to stay practised even when driving.

    Why we can't exactly change our brain all the time though is because of who we are individually, our interests and what we like doing more than other things, it's just who we are so it would be a waste of time researching if we could just change who we are on a whim noop… we can't 😛 so of course it will be limited.

  26. I starded watching Tedx's videos to improve my linstening but I've been learning a lot of precious informations so far! 😍 Thanks!

  27. One of the most concise and comprehensible presentations on brain function that I've heard. Ms Boyd is a gifted teacher.

  28. I am very happy and lucky to find this video and this lady who gives the great lessons. Start to change for the best more and more in everyday.

  29. Im going to save you 15 min by watching this video, telling you that your brain will be the same after watching it. By learning something new, our brains learn new skills and new ideas, THAT'S IT!

  30. of course the brain changes as we learn new things, humanity has always been able to adapt which will change our brain to help us adapt

  31. In short, what your brain is exposed to "good or bad" will describe your behavioral personality towards the environment you are about to explore and develop the desires that change you life

Leave a Reply

Your email address will not be published. Required fields are marked *